skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carbone, Sullivan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Pico-STRAT Bi Gaz spectrometer provides in situ mixing ratio measurements of water (H2O) and methane (CH4) [or carbon dioxide (CO2)] under balloon. The instrument was flown in the tropical upper troposphere and lower stratosphere in 2019/20 and 2021/22 during the Strateole 2 campaigns for a total of five flights of 20–80 days between 18- and 20-km altitude. In this frame, in situ measurements of water vapor and methane were performed every 4–12 min in the equatorial tropopause layer. On several occasions, water vapor measurements of Pico-STRAT Bi Gaz have been compared with localized measurements from the Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon (FLASH-B) Lyman-αhygrometer and vertical profiles of the NOAA Global Monitoring Laboratory (GML) frost point hygrometer over Hilo, Hawaii. Pico-STRAT Bi Gaz measurements agreed with the FLASH-B hygrometer to within 2.2% ± 5.3% between 18.2 and 18.7 km in 2021 and to within 1.3% ± 5.3% near 19 km in December 2019. Pico-STRAT Bi Gaz agreed with NOAA’s frost point hygrometer (FPH) hygrometer to within 1.2% ± 4.1% between 18 and 19 km on four occasions during the two campaigns. These are within both instruments’ uncertainties. Methane measurements from Pico-STRAT Bi Gaz have been compared with in situ measurements from the whole air sampler (WAS) instrument, flown aboard the NASA WB-57 aircraft during the Asian Summer Monsoon Chemical and Climate Impact Project (ACCLIP) 2022 campaign over South Korea, 8 months after the Pico-STRAT Bi Gaz overpass. The relative difference between both instruments is found to be −0.1% ± 0.9% within the altitude range from 17 to 19 km and within the Pico-STRAT measurement uncertainty. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027